from dataclasses import dataclass from cryptography.hazmat.primitives.asymmetric.ed25519 import Ed25519PrivateKey, Ed25519PublicKey from cryptography.exceptions import InvalidSignature import hashlib import time @dataclass class Transaction: id: int sender: bytes receiver: bytes amount: int transaction_fee: int signature: bytes def is_valid(self): sender_pubkey = Ed25519PublicKey.from_public_bytes(self.sender) msg = self.id.to_bytes(4, "big") + \ self.sender + \ self.receiver + \ self.amount.to_bytes(8, "big") + \ self.transaction_fee(8, "big") try: sender_pubkey.verify(self.signature, msg) except InvalidSignature: return False return self.amount >= 1 def is_valid_after_block(self, block): if (self.sender, self.id) in block.used_transaction_ids: return False balance = block.balances.get(self.sender) if balance is None: return False return balance >= self.amount + self.transaction_fee def get_transaction_raw(self): return self.id.to_bytes(4, "big") + \ self.sender + \ self.receiver + \ self.amount.to_bytes(8, "big") + \ self.transaction_fee.to_bytes(8, "big") + \ self.signature @dataclass class Block: nonce: int timestamp: int previous_hash: bytes message: bytes difficulty_sum: int miner_pubkey: bytes transaction: Transaction balances: dict # (sender_pubkey, id) tuples used_transaction_ids: set valid: bool def validate(self, blockchain): if self.transaction is not None: if not self.transaction.is_valid(): return False if self.previous_hash != 32 * b"\0": prev_block = blockchain.get_block(self.previous_hash) if not prev_block.valid: return False if self.timestamp <= prev_block.timestamp: return False if self.timestamp > time.time(): return False if not self.transaction.is_valid_after_block(prev_block): return False else: if self.transaction is not None: return False # check for the correct miner pubkey - which will become public at launch day h = hashlib.sha256(self.miner_pubkey).hexdigest() if h != "88023d392db35f2d3936abd0532003ae0a38b4d35e4d123a0fa28c568c7e3e2f": return False B_1_difficulty_sum, B_1_timestamp = self.get_difficulty_info(1, blockchain) B_10_difficulty_sum, B_10_timestamp = self.get_difficulty_info(10, blockchain) D = B_1_difficulty_sum - B_10_difficulty_sum T = self.timestamp - B_10_timestamp calculated_difficulty = D * 3000 // 9 // T block_difficulty = max(calculated_difficulty, 2**28) if B_1_difficulty_sum + block_difficulty != self.difficulty_sum: return False block_raw = self.get_block_raw() block_hash = hashlib.sha256(block_raw).digest() self.valid = int.from_bytes(block_hash, "big") * block_difficulty < 2**256 if self.valid: self.calculate_balances(prev_block) self.calculate_used_transaction_ids(prev_block) return self.valid def calculate_balances(self, prev_block): if prev_block is None: self.balances = { self.miner_pubkey: 100, } return balances = prev_block.balances.copy() balances.setdefault(self.miner_pubkey, 0) balances[miner_pubkey] += 100 t = self.transaction if t is not None: balances[miner_pubkey] += t.transaction_fee balances[t.sender] -= (t.amount + t.transaction_fee) balances[t.receiver] += t.amount self.balances = balances def calculate_used_transaction_ids(self, prev_block): if prev_block is None: self.used_transaction_ids = set() return used_transaction_ids = prev_block.used_transaction_ids.copy() t = self.transaction if t is not None: used_transaction_ids.add((t.sender, t.id)) self.used_transaction_ids = used_transaction_ids def get_difficulty_info(self, steps, blockchain): if steps == 0: return self.difficulty_sum, self.timestamp if self.previous_hash == 32 * b"\0": difficulty_sum = 2**29 - steps * 2**28 timestamp = self.timestamp - steps * 300 return difficulty_sum, timestamp else: previous_block = blockchain.get_block(self.previous_hash) return previous_block.get_difficulty_info(steps-1, blockchain) def get_block_raw(self): if self.transaction is None: transaction = 148 * b"\0" else: transaction = self.transaction.get_transaction_raw() return self.nonce.to_bytes(8, "big") + \ self.timestamp.to_bytes(8, "big") + \ self.previous_hash + \ self.message + \ self.difficulty_sum.to_bytes(32, "big") + \ self.miner_pubkey + \ transaction class Blockchain: def __init__(self): # maps block hashes to block instances self.__block_map = {} def get_block(self, hash): return self.__block_map.get(hash)